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1. Introduction

The adaptive observer concept is a scheme for determining the state of a
system possessing unknown parameters when only the system input, output, and
form are known. The first reported adaptive observer, for single~input single-
output time invariant linear systems, appeared in [1] and [2]. A modification
of this observer to simplify the adaptive dynamics was subsequently reported [3].
Both these schemes exhibit the desirable properties that the eigenvalues of the
cbserver matrix may be freely chosen (an important capability for systems with
measurements corrupted by noise), that the simple Liapunov adaptive algorithm is
implemented entirely on line during system operation, that no derivative networks
are reguired in the adaptive algorithm, and that both the state of the system
under observation aﬁd the unknown parameters of that system are progressively
determined regardless of the magnitude ef parameter ignorance.

In (4] the single-input single-output adaptive observer was extended to
cyclic multivariable systems by introducing a suitable transformation that
converts the system to a single-output system. Consequently the multivariable
adaptive observer in this scheme 1s of the same order as the system regardless
of the number of system outputs available, and the number of adaptive gains
needed to implement the cbserver algerithm equals at least the sum of the
system order and the number of input parameters being adanted.

In this paper an adaptive observer for multiveriable systems is
reported for which the dynamic order of the observer is reduced, subject to
mild restrictions given in Theorem 1, to n~p+l where n is the order of the
system being observed and p is the number of independent output measurements.

The cbserver structure which is developed here depends directly upon the
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miltivariable structure of the system rather than a trensformation to a
Single-output system., The number of adaptive gains is at most the sum of the
order of the system and the number of input parameters being adapted. Moreover,
for the relatively frequent specific cases for which the number of required
adaptive gains is less than the sum of system order and input parameters, the
nurber of these gains is easily determined by inspection of the system structure.
This adaptive cbserver possesses all the properties ascribed earlier to the
single-input single-output adaptive cbserver. Like the other adaptive observers -
mentioned, some restricticn is required of the allowable system command input
to guarantee convergence of the adaptive algorithm, but the restriction is

the

more lenient than that required by/ full-order multivariable cobserver in [41].

Finally, this reduced observer is not restricted to cyeclic systems as is [4].

2. The Prcblem To Be Solved
An observable and controlleble linear time-invarient dynamical system

described by -

x = A% + Bp %(t ) = x°
y = Ci (l)
is considered, where »{(t)e ED i5 the state of the system, r{t)e Eim is the

P is the output. TFor purposes of this paper, (1) is

command input and y{tde &
multivariable with n>p>1 and m>1, the pair (C,A) is completely cbservable, and
the pair (4,B) is completely controllable. A and B are appropriately -
dimensioned matrices having parameters of unknown value. C is a known matrix of
dimensicn pxn.

The problem is to determine the state x of (1) using only the input r, the

output y, and the structure, but not the values, of matrices A and B.
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This is te be accomplished by a generating process which duplicates as little
as possible the state information available in the cutput; thus the generating
brocess is sald tec be a reduced adaptive observer.
The reduced adantive obgerver is of the form
£ = Pt + Gy + Dr + Hu
. (2)
g(ty) = £
yo -p+1 . . s s . . .
where fe-£, is the estimate of the missing state information in the output
of (1). The matrices C and D and the vector u are te be adaptively manipulated
s0 as to guarantee that £ asymptotically equals 2 transformation of the unknown
state variables in (i). ¥ may have arbitrary distinct eigenvalues.

The state x can be ultimately constructed once the transformation has been

identified., TFigure 1 illustrates the situatiom.

The Strategy of the Scluticn

The tramsformation T, indicated by T4 in Figure 1, allows the system (1)
te be assumed to be in a form suitable for constructing an adaptive law based
upen Liapunov synthesis techniques.

The strategy for solving the problem posed in Section 2 is to first deter-
mine the effects of parameter uncertainty in the system upon the accuracy of
the observer estimate of the system state. In Section 4 an error vector is
defined as a comparison between the tramsformed system state and the cbserver
estimate; subsequently an error equation is derived reflecting the influences
of parameter uncertainty in the system. Theorem 1 of Section 5§ defines suffi-
cient conditions under which (1) may be transformed into a form suitable for
a Liapunov synthesis technique. It is seen in this sectien that with this
form the error equation may be eonsiderably simplified. In Section 6 the

Liapunov adaptive synthesis technique is used to derive an adaptive law. The
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essence of this method is to define the adaptable parameters in such a way as
to insure, by means of a Liapunov function, that the error equation is
asymptotically stable. Due to the fact that the resulting Liapunov function
chesen here (as may be seen by equation (18) and (20)) is defined on a non-
compact manifold, Theorem 2 gives sufficient restriction upon the system input
to insure that the error equation is asymptotically stable on the compact
manifold. Thus an estimate of the system state, which asymptotically converges
to the true system state, may be cbtained by inverting the original transformaticn
of the system as indicated in Section 7.

As an illustration of the technique of this paper, an example is given in
Section 8 and a computer simulation of this example appears in Section 8.

It is propitious to collect here certain definitions which allow brevity
in the remeining sections of this paper. The motivations for these definitions

will be discussed in the appropriate locaticms.

Definition 1
‘;f n,p hereafter refers to the collection of all non-singular square
matrices T of dimension nxn having the fellowing properties
T may be partiticned as

(p~V)x(p-1) (p-L)x(n-p+l)

Ty ’ Tin
T = {e & w - = —- e
Ty f’ Thg
‘ 4

(n-p+1)x=(p-1) (n-p+l)x(n-p+l)

wherein a) T,, = 0;

12

b) each element in the uppermost vrow of T,. is independent of any system

21

parameter.
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and ¢) the uppermost row of T., is [C 0 0 ... 0] with C # O.

22
When there is no possibility of confusicn,.:f; B will be referred to as§jp.
3

Definition 2
The "adaptive cencnical form" refers to all matrices A of dimension nxn
having the following prcperties:

in the partition

)

a) A22 has the form

r 7
Gl 1 1 1 ... 1
G
G
0 An——p
0 .
= 4 (n-p+1)x(n-p+l)

where £ is a diagonal matrix with distinct eigenvalues of dimension

n-p and a, zmy real number,

1

and D) Aoy has no more than n-1 non-zerc elements.

4, The Error Equation
The development of the error equation is somewhat similar to that iIn [5]

for systems with known parameters.
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Without restriction if C is known, it may be assumed in (1) that C=[Ip§ 0l
where Ip is a pxp identity matrix. For example, the transformation X =Eg3—lx
transforms (1) into this form for any C, where H is selected to make the

transformation matrix non-singular. Then in partitioned form (1) is written

as
y = Ally + Algw + Blr
W= Ayt AW+ By (3)
y y
y = % =
Wy ]

vhere v ¢ Eip*l and w ¢ Ein—p+l. The dimensions of ¥y and w indicate the
dimensions of the partitions in (3). Since only w is to be estimated by the
adaptive cbserver, the dimension of the vector w is chosen as. small as possible
while still retaining an element of the output, which is essential for implement-
ation of the adaptive law.
The adaptive cbserver i1s initially described by
E= FE+ (FK + G-KM)Y - K§ + (D-KB_)r + Hu (%)
in which € € Ein~?+1 « If at this point (4) is taken as a hypothesis fdér a
generator of w, it will be shown that the error between w and a function of
E can be made to vanish by adaptively adjusting G, D, and ¥. It will be
subsequently shown that g  suitable transformation of (3) allows (4) tc be
rendered unto (2).
Let an estimate of w be £ + Ky. Then defining, as in [5], the error
e = E+ Ky ~w ' '

on the reduced space fin_p+1} it follows that



e=E+ Ky + Ky - w

1l

S oo s - - 5
F(g + Ky - w) + (F A22)w + (G Ay1 Y

+ Ky - ¥§) +(D - B, - KBl)r + Hu

2

. A -~

Defini :~_ v - My =2 v - ¥ - My = -~#
efining M = M Ajysothat y - My =y - A,¥ My = AW+ B,r - My, then

e = Fe + (F

!

A+ KAlQ)w + (G - A?l - KM)y 6)

22

+ (D Bz)r + Hu

in which it 1s seen that the reduced error depends upon both the measurable
vector y and the unmeasurable {(save the first element) vector w. It is impossible
in a manner similav to the Luenberger observer [6,7] to define F = 4#,, - KAlQ,
M=k, D=8y, G=A,, and H = 0 to eliminate these dependences from (6),
since A and B are hers unknown.

Rather, it is desired to adapiively adjust the triple (3, D, K) so that the
coefficients of w, y, and r in {6) eventually wvanish, Then if F is chosen with

eigenvalues all with negative real parts and if u + 2, the reduced error e

vanishes.

5. The Transformation

If it is possible to show with respect to (3) that a suitsble transformatien
matrix T exists so that Tll=CT and that E=TflAT is in adap:ive cancnical form with
having arbitrary specified eigen-

Ehe it lement A.. = T,.> ( T.. A ) T
partiticon element A,, = T,, AEZ = Toq A49

values, then setting F = A,, in the equation (analogous to (6))

22

&= Fe + (F - Ay, + Khpdw + (6= Ay, - KM)Y (N

22
+ (D - B2)r + Hu
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permits defining K = 0. Doing this is advantageous since the influence of w

in (7) is =liminated, the necessity of adapting K is removed, and (since M is
related to All) the influence of unknown elements of All = Tii (AllTll + A12T21)
is diminished.

As will be seen, under some restrictions on A a transformation T can be found
that satisfies the preceeding requirement and the additional requirement that
Tll = CT be independent of parameters of A. By virtue of this latter requirement
the outputs can be treated as transformed state variables without specifically
identifying T.

For suitable definitien of u, the transformation which satisfies these
requirements is a member of the collection j and the transformed matrix
A= TYAT is in adaptive canonical form. Theorem 1 gives sufficient conditions
on A for the existence of such a T ¢ J .

In the following theorem, let the symbol(}i[x] denote the range of yx, let
g=0c 0 0 ... 01,C# 0 be arow vector of dimension 1 x {n-p+l1), and let

A,, denote the (n-p+1) x {(n-p+l) partition of the adaptive canonical form.

Theorem 1

Let the pair (A A22) of the matrixz A be completely observable. Then

iz
there exists a T ¢ j that traneforms A into the adaptive canonieal form in which
n-p eigenvalues of ;122 may be almost arbitrarily chosen.

If in addition, (REQT ]CG{[AEITZJ, then the n-p eigenvalues of ;122 may be
arbitrarily chosen.
Proof. The proof is in two parts: to show that a T ¢ j exists that puts A22 into

adaptive canonical form with the desired properties, and that A21 also satisfies

the requirements of the adaptive canonical form.



-9-
Suppose that (A22, Alz) of the matrix A 1s completely observable. According
to the definition of :‘, the (n-p+1) x (n-p+l) partition T, 0 T € jis arbitrary

except for the uppermost row which iIs ¢ = {C 0 0 ... 0], C# 0. Since 1122 =

T;é' (A22 - T, A )T o» vhere T,. is the (n-p+l1) x (p-1) partition of T ¢ j, it

2112772 21

must be shown that 322 is of the form required by definition of the adaptive cam-

onical form, and that by choice T,, the n-p eigenvalues can be freely chosen. It

21

has been shown [3] that there exists a matrix T,, of the required form which
transforms a cyclic matrix P into A22 + L, where L is a matrix having only the
leftmost columm non-zero, if and only if (Q,P) is completely observable. In the

Thus if by choice of T P can have n-p eigen-

21A12' 21’
values equal to the desired eigenvalues of ﬁ22 and if (Q,P) is completely observable

Present context, P = AQQ-T

for this choice of T21’ then L = 0 (except perhaps for the element in the upper
left corner, which is irrelevant by definition of the adaptive canonical form).

Suppose first that { T{[QTJC@\'_[A;]. Then for any cholice of T,. the pair

21

(Q, A22 - T21A12) 1s completely observable and at least n-p eigenvalues of A22 -
>

T21A12 can be arbitrarily chossn [8]. Therefore A22 = T, 322—T21A12) T22 is

in adaptive canonical form with arbitrary eigenvalues for some choice of T21 and
T22 of T e :j.
T - T . _ s .

Suppose now that (R_[Q jgf@[AlE]' Since the pair (A.L'Z’ A22) is completely
observable, at least n-p eipgenvalues of P = A22 - T21A12 can be arbitrarily chosen
but (Q, P) may not be cbservable. A trivial extension of Theorem 4 of [10] says
that the set §{= {T21|(A22-—T21A12, Q) not observable} is either an empty set or a
hypersurface in the parameter space of T21 when the pair (A22, AlQ) is completely
cbservable. Consequently :&22 is in adaptive canonical form with almost arbitrary
eigenvalues for scme choice of T,, and T21 of T ¢ :j, since the choices of T

21
is limited to those T21 4 4'7( Thus the first part of the theorem is proved.
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-~

Now it is shown that A;; has no more than n-1 non-zero elements with the
appropriate choice of T ¢ (. In the (n-p+l) x (p-1) partition Top of T € 3
there are (n-p+1)(p-1) - (p-1) = (n-p)(p-1) parameter-dependent elements. At

most n-p of these elements are needed to specify the n-p eigenvalues of A22—T21A12.

Therefore, at least (n-p)(p-1) -~ (n-p) = (n-p)(p-2) parameter-dependent elements

of T21 are unspecified. Each unspecified element may be specified so as to make

- -1
an element of Ay, = T,n (A)Tyy + AyoTpy - T5yT1380 g - T21A12T21) zero.

Since there are at most (n-p+1)(p-1l) non-zero elements in A

124 eliminating
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(n-p){(p-2) of them leaves at most (n-p+1){p-1) - {(n-p){p-2) = n-1 non-zero

elementz in A21' Thus the theorem is proved.

Corollary
If in addition to the requivements of the theorem the pair (8 Ay 18
complately observabic where @ = [C 0 0 ... 01 , C# 0, then the uppermost

row of the partition T21 of T E:fnmy be chosen as zero.

Proct

The proof of the theorem requires that (Q, A ) be completely

22~ Ta1t12
cbservable for gsome choice of T,,. I (Q, AQQ) is observable, then (Q, A,y -
T21A12) is completely chservable by the trivial cholice Tyy = 0. However,

since n-r elgenvalues of A, - ave tc be arbitrarily chosen by choice of

Ta1812
Toy and at least (n-p)(p-2) elements of A,, are to be chosen zero by choice
of T21’ it generally requires all but p-1l non-zero elements of TQl' Generally
these elements must be parameter-dependent; thus only the p-~1 parameter-

independent elements appearing in the uppermost row of T21 nay be zero.

6. The Adaptive Law
It is assumed that (3) satisfies the conditions of Theorem 1 and censequentl:

may be written as

v = A vy + AW+ By
. ﬂll— ~l2 ~l (8)
w o= 1Y + Agzw + Bzr

where A if of adaptive canonical form and the scalar w is a linear combination

of Wy and elements of y. The scalar w is constructed externally to the system
in accordance with the upper row of T21 so that the transformed system output
matrix is in the form assumed in (3). According to the corollarv, w = w. if

1l
(Q, A,,) is completely observable.
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F in (2) is taken zs

“A, 111 ... 1]
0
0
k= 0 An—p (9)
L 0 | (n-p+1) x (n-p+l)

for ll any real number distinct from the distinct eigenvalues of the diagonal

%y and (7) may be written

matrix Anmp' Let hlul = (o + ll - gl)wl

e = Fe + ¢y + ¥r + Ho (10)
s o0
e(to) e

-~ ~

where ¢ = G - A?l and ¥ = b~ B,. The other elements of u will be defined later.

The adaptive law for ¢ and ¥ in (10) must be defined in terms of only those
variables which ape available for measurement. Consequently (10) will be mani-
puleted in a way to obtain a sealar equation, equivalent to (10), for which
such an adaptive law can be formulated.

- let the (n-p+l) x (p-1) matrix V be defined as
- T

gt

Ve fooem— - (11)

LH [}
in which p means ' e and hi =[1 1 1...11] of approprizte dimension.
Clearly the (n-p) ® (p-1) submatrix (pI —An~p)—lh1§T is composed of filtered

output variables.
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In & similar manner, let the {n-p+l) x m matrix S be defined as

S = (12)

in which hg =1 1 1 ... 1] of appropriate dimension. It will later be shown
that the adaptive law requires at most n-1 elements of V.
Consider now the lowermost n-p scalar equations of (10). The ith equation,

2 <i <n-ptl, is

' i ]
e, = -\,e, + by F. + Y.. r, + h.u, (13
i 11055 4TS j51 333 i7i
If in (13) hiui, 2 <1 < n-p+l, is defined as
Byup = 4wy
p=l mo,
hou, =} oo Veo + ) Uss S.. (14)

11 321 13 17
2 < i < n-ptl

then (13) is a separable differential equation for each i. To show this, the

identities for each i

p=1 ., p-1 p-1
d
.. V.. = =— L z $ae V.1 - Z d., V
521 ij i3 at 521 1§ "ij 551 ij i3
m o, a m . ?
= == L .
.Zl UTII TR E Vi3 %130 7 Lk Y19 %4

]

are neaded. Using them, (13) becomes



(14),

law,
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o
~11
=

+
|
U1y
<
0

1
big Vis ¥

D-
d [ E
) :]

dt
1

Substituting (11) and (12) into the above yields

. ) T ) ]
-— [e&, - bes Veu = ) W.. s..1= -2 fe, - oe Vio - Vee Sas
dt "1 j=p 3043 4y 43743 S I ij "ij
' (15}
is integrated to yield
p-1 m
- - 6
ey _E ¢ij Vij + .Z wij sij + 8 expl hit] ) (186)
3 J=1
0 -7 e, )
8, = e} - $..(€) v, (£} - p..(t) s,.(t)
i i 42y i ij jop ij
= tOf |
Equation (16) is applied to the first equation of (10) giving
* T T n_E'f'l
& = -Mey Ftr ¢V + tr ¥'S + ‘f’lyp + B, exp [-A,t] (17}

i=2

It is thus seen that (10) and (17) are equivalent, with definition of u in
but with the difference that (17) is a scalar equation. The adaptive
dependent upon measurable variables only, may now be formulated,

A Liapunov function candidate is selected as

V= ei-r Gi ¢§+tr (a ® cI:ch) +tr (r ® @Ttb) - (18)
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in which A and T are matrices having no non-pesitive element and the

symbol (%) represents element-by-element multiplication of matrices.

time derivative of (18) along the trajectory described by (17) is.
y 2 2 ¢
V=
2 Alel + (61 9, * ypel)¢l

+tp (A o+ Ve ) +tr yIr B ¥+ Se.)

n—E+1
+ 0. expl-Ar,tle
427 i 1 1

Then (19) can be made
. n-§+l
2V = —a e’ + L ei exp[-hit]el

.

whenever ¢l’ ¢, and ¥ are defined as

2"

81 ¢y 7 -vpey

A ® o= - Ve,
T G@ ¥ = - Sel

Equations (21) may be also wyitten in scalar form as

b = - v e =

1 ;2 p1 1
1

Boi 2 - 2 v, e = -g

13 2 43 17 TRy
1]

=--}-—--—S e:—

Yy > 513 17 T%;3

Yij

The

(19)

(20)

(21)

(21a)
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for each i, § in their proper domains. Equations (21) or (2la) are the

adaptive laws sought.
V is eventually negative definite whenever all the eigenvalues

~A, =A

1° =X have negative real parts =ince ther the initial

27 "7 Tpepal

condition disturbances Gi decay exponentially. Consequently e, is asymptotically

1
stable in the sense of Liapunov.
It is desired that lim e(t) = 0 in order for the adaptive cbserver to

<0
generate the system state. If scme restriction on the input vector r is imposed,

it can be shown that e140 implies e=0.

To see this, comsider the limiting wvelue of (17) which is

T T
O=tr ¢ V+tris+ ¢lyp (22}

If by suitably restricting r, or equivalently V, S, and yp, so that (22)

implies in the limit that o7 = G, yT - 0, and ¢, = 0, then (10} is

& Fe
implying e»0 since T is an asvmptobically stable matrix. The above equation
follows From (10) since . , 2 < i <n-ptl, is zero in the limit as evident
from (14) and (21).
The fellowing theorem defines the restricticn on r guaranteeing =0, ¥=0,

and ¢1=0 for e, =0 when the steady state r is periodic. -

1
Thecrem 2.

Let q be the number of adaptive parameters in the observer (2), let the
observer matrix F have eigenvalues all with negative real parts, and let the
system (3) be completely controllable through each colum vector in the input
matriz B. If the collection of inputs {rl, Toy eoes rm} possesses no fewer thon

[( q 1/2] distinct steady-state Frequencies, then (2) generates the system state.
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Proof.

The proof is by induction. It is shown [2,3] that the theorem holds for

m=1, Assuming that the theorem holds for m=ml,it will be shown that it holds

for m=ml+l.

Let each Yj’ 1<3 f_p,_be related to the inputs Tys Tos rees Pml+l by
m%+l
y. = h., (p} 1
=
where p = dfdt.
Then (22) is
m.+1
lz pil n-p+l p~1 hjk(P) wik
0 = {$,, + ¢.. h. (p) + E E (b.. )
R AL =R ST T
+ 0, hpk(p)} T (23)

Since, by (20), e,70 and, by (21}, ¢ij’ wij’ and ¢, are cmstants, (23) may

be written

Hl(p)r1 + Hg(p)r2 + oae. Hml(p)rml = - Hml+l(p)rml+l {2u)

where Hk(p) are the terms in brackets in (23) for each k, 1 < k < m+1. Let

the number of distinet adaptive coefficients in the left side of (24) be qy

and the number of distinct adaptive coefficients in Ho +l(p} be q,. By defini-
, 1 '
tion g=q, + g,. By assumption {r., r,, ..., r_} contains [(q, + 1)/2] distinct
1 2 1 2 ml 1
frequencies and the left side of (2u4) is zero since Hl(p) = HQ(P) T L. T Hml(P)=O

and

0 =H (plr
m1+l ml+l
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Therefore only the distinct coefficients of Hm +1(p) are non-zero. By
' 1
inspection of (23), these are the wik terms which are 4, in number. Thus

by [2,3] if T,

1 contains at least [(g)/2] distinct frequencies (i.e. distinct
1

from the frequencies of {r., v., ..., r_}) then H (p) = 0. Censequently
1 my m1+l
{rl, Py eons T +l} containing [(g)/2] distinct frequencies implies that Hl(p) =
1

Hg(p) = ... = Hml+1

(p) which was to be proved.
Theorem 3

Let the conditions on the observer (2) be as stated in Theorem 2, but let
there be no requirement upon the column vectors of the input matrixz B of the system

(8). Then it i3 sufficient that each input r.er each possess [(q}/2] distinct

steady-siate frequencies in order for (2) to generate the system state.

Proof: -

The proof follews from equation {23). When any hjk(p) is zero or linearly
dependent, then the parameters ¢ij and wij are not fully "coupled” with each of
+the inputs 2N of equation (23). This in general requires that frequencies must be
assigned to each T depending upon the degree of freedom in the coefficient of )
in equation (23). Assuming complete "decoupling™ of each ¢ and ¢ with respect to

each r , it is clearly sufficient that each r, must possess [(g)/2] frequencies

from equation {2u).

Remark: The sufficient conditions stated in Theorem 3 are noted to be wery
conservative as a cursory glance at the proof of this theorem reveals. It is
suspected by the authors that under the conditicms of Theorem 3 the requirement

. for state generation may be liberalized to allow only the collection of inputs
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{I‘lg Tps wees rm} possess [{(q)/2] steady-state frequencies, as in Theorem 2, but
with the additional restriction that the frequencies must be assigned in some
way depending upon the controllability structure of system (3).
At the time of this writing however, the above speculation has not been
Proved.
7. Reconstruction of the System State
The observer (2) generates the state of the transformed system (8), To
obtain the state of the system (1) the observer estimate £ must be transformed
by ) [ 7
X = Th £
where x is the estimate of the system state x. T cannot be immediately written
since it contains wmknown elements of A; however, sufficient identification of the
system matrix A occurs as a result of the adaptive laws (21) to allow T to be
determined. Comsequently the time-varying matrix %(G,D) may be constructed so that
. 37}
x = T(G,D) £

~

is the observer estimate of x. 8ince 1im T(G,D} = T the state x is ohbtained.
)
Theorem L summarizes the wesnlts of this paper.

Theorem 4

The state of system (1) may be adaptively constructed by the observer (2)
by employing the adaptive algorithm (21) and the control vector u of (14), both

subject to definitions (11) and (12) if



=320~

a) in (1) the partition (4 Agg) is completely

12°
observabile, and

b) the maber of distinect frequencies in the system
commond input r ig no fewer than [(q + 1)/8] vhere
q 18 the number of parameters to be adepted. Moreover,

the number of parameters to be adapted ie not greater

than n plus the nunber of input parameters.

8. Example
A specific example is given here to illustrate the design of a reduced-
order adaptive cbserver.

Suppose the system is represented by

;1 1 [ -a, 1 0 0 T 7 %y | T 0 0

:"<2 -a, G 1 0 .s"<2 by o

% ) 2, 0 0 1 %, ' 0 o | ¥ (1%
:-CL; -3 o 0 0 i %, - |0 b%

’yl’ 1 o 0 0 %, |

¥, =10 1 0 0 >'<2

Vq 0 0 1 0 ‘—‘3

. - . - 4 -

with a,, ajs 8y, A5, bl, and b2 unknown constants. (This is, of course, not the

most general input matrix.)
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It is seen that (A ALY = ¢ 0 0 0 1 } is completely cbservable.
12° 22 10”0 o0 )
Therefore there exists a non-singular square transformation T e j that puts

(1%) into adaptive canonical form. Such a matrix is

1 o 0 0
0] 1 0 0
T =
0 0 1 G
2
al ~A2 12 1]

Nete that the uppermost row of T is zero since ([1 0], A22) is a

21

completely c¢bservable paiv.

Then
[x | ‘—a 1 0 G b4 ] 3 0 0-
1 3 1
x2 —a2 0‘ 1 0 x2 bl G rl
= 2 + (8%)
xa 0 —A,) )‘2 1 xa 0 0 r2
% 2 -a 0 - % b2y
e T 2771 2 4 12 "2
1 G 0 0
y= |0 1 0 0] x
) 0 1 0
here ¢ = a - 3 AQ -a
WASTE T T %1 9 2 "2 "%

From the form of {3%) it is seen that

9 = By T
3
bop = 8y + (287 ~A))
_ 2 (10%)
931 7 dy1 ~ By

0 7 dyy = by



is to be adapted.

-0

Note that only 4 parameters need to be adapted for which

in (1%) there are 6 unknowns.

The adaptive laws

in which e, = £

1

with

and

-— ys’

anre

O Y21 %1
1
b0
A
Y21
1

Y59

(21%)

and the reduced cbserver is

(2%)

+ (ll + ?\2)};3

0p1Voy t PooVon T ¥py8p7 F ¥poSog (14%)

v
(11%)

(12%)
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The cbserver eigenvalues, —Al and -12, are arbitrary but distinct negative

numbers.

The state % of system (1%*) may be reconstructed by the equation

% = 1(G,D) [Y]

£

where
~ 1 >+ o 0 0]
~ 0 1 0 0

T = 1lim T(G,D) = lim
o o 0 0 1 0
3 .2

ngz(t)+k2 —AQ 12 1

9. Computer Simulation
The system of Section 8 was simulated on a digital computer. The system
parameters assumed unknown were b2, g5 351 and &y The following values

were chosen for simulation:

ay = 15 bl =1 Yoy T 1/1¢

a4 = 33.5 b2 = 2 622 = 1/250

a, = 26.0 Al = 10 ¢21(0) = 180.25
ay = 8.5 KQ =5 ¢22(0) = =100

The inputs ry and r, were chosen as sine waves with frequencies of 3.5 and 5
rad/sec. respectively. The behavior of the two adaptive parameters ¢21 and
¥,, are shown in Figure 2 and the (transformed) cbserver error e, is shown

in Figure 3.
Conclusions

A reduced gdaptive observer has been shown to estimate the state of an
unknown multivariable system. Significant veduction in the order of the observe:

and the number of adaptive gains may be obtained by this method. In addition



to generating the state of a system with unknowr pavamneters, partial
ldentification of the perameter is accompliished. Full freedom is allowed
in the selection of cbserver eigenvalues, thus allowizg scme suppressicn
of inherent systcnm nolse.

At pfesent no other reduced adaptive observer has been reported in

the literature.
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